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The Lens

As with any advanced ubiquitous technology, the lens is now an
essential but unobserved part of our lives. Set in frames perched on our
nose or floating on a layer of tears on our cornea, lenses overcome
blunted sight. Lenses provide revelatory views of the microscopic and the
galactic, allowing us to apprehend the vanishingly small and the
unimaginably distant. Using lenses, we capture, share, and preserve
images. And with lenses, we harness light to be our swiftest messenger.
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Fig. 1. Alexis Clairaut’s memoir of 1762 on constructing lenses that do not exhibit
chromatic aberration, viewed through a magnifying glass with two simple biconvex
lenses, the smaller more powerful embedded in the larger. At the distances used for this
photograph, the magnification is about a factor of two for the large lens and about five for

the small lens.

Lenses occur in many visual systems in nature and are among
evolution’s most elaborate outcomes. In the human eye, lenses produce
an inverted, focused image of viewed objects at the back of the eye, where
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it is encoded into electro-chemical signals sent to the brain. The result is
visual perception, recognition, cognition, and behavior. The optical part
of this sequence begins at the front of the eye with the cornea and ends
at the retina at the back.

Cornea

Retina

Fig. 2. The principle optical components of the eye. Cornea: transparent bulged part of the
outer eye. Lens: transparent, flexible body providing accommodation; that is, focusing.
Retina: triple layer of cells for absorbing light and producing electro-chemical signals.

“Focusing” is the fundamental function of lenses. It comes about this
way. Light refracts (changes propagation direction) at the interface
between media of different densities. Refraction and the shape of the
interface can be combined to collect and the change direction of incoming
rays. Incoming parallel, or nearly parallel, rays can be brought to a point
in front by a convergent lens, or dispersed from an apparent point

behind by a divergent lens. The human eye has two types of lenses. (See
Figure 3). The Cornea is a positive meniscus and the Lens is a double
convex. Interestingly, the Cornea provides most of the focusing power of
the eye, while the Lens adds a smaller but variable power.
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The Lens

Focusing power of a lens is expressed in terms of how close to the lens is
the focal point it creates — that it, how much it bends the light path. The
distance from the lens to the focal point, (focal distance for parallel
incoming rays) is measured and the inverse of this distance, in meters,
expresses the power of the lens in Diopters. The stronger the lens, the
smaller the focal distance, the greater the inverse, and the larger the
resulting Diopter value. Reading spectacles that many of us use have
Diopter ratings between 1.5 — 3.0 Diopters. That is, the focal point is
between 0.66 and 0.33 meters from the lens. Divergent lenses power is
expressed in negative Diopters, since the focal distance is behind the
lens.

When the eye is functioning normally, the Cornea and Lens together
produce a focused image on the retina at the back of the eye. If the
eyeball is too long or too short, a focused image cannot be produced for
some visual objects, and vision is blurred. Myopia and Hyperopia,
respectively. (See Figure 4.) It is estimated that 15-20% of the human
population have these vision limitations to varying degrees.

Myopla -~
(Mearsighted)

Fig. 4. Unfocused images due to Myopia and Hyperopia. The nearsighted require an object
to be close to eye which, given the least focusing power of the cornea/lens, moves the
focused image back onto the retina. The farsighted require an object to be far from the eye
which, given the maximum focusing power of the cornea/lens, moves the focused forward
onto the retina.
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Though near- or farsightedness affect some, vision begins to become
limited after the age of about 40 years for all humans. The Lens begins to
lose it flexibility, the combined focusing power of the Cornea/Lens
decreases, and for close objects vision is blurred since the focused image
is behind the retina. This diminishment continues for about 20 years
and is called Presbyopia, farsightedness due to age. The term is from
Greek nipé¢ofug presbys meaning "old" and dyp ops meaning "sight."

FOR

It is Presbyopia which, when partially corrected, first showed the power
lenses can have to aid vision. This was known to the ancients. In his
Naturalis Historia, Pliny the Elder (23 AD-79 AD) makes the earliest
reference to shaped quartz or gems to correct vision and notes the
magnifying power of water-filled glass globes.

1535

Gaius Secundus Pliny (Pliny the Elder)
Naturalis Historia

Gaius Pliny the Second, History of the World, Emended anew.
Selected from a Collection of not a few Ancient and most
Faithful Copies, Corrected and Attended to now for the First
Time, in a Manner Apparent from the Annotations of Sigismund
Gelenius Attached to the Work. A Copious Index is Attached.
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Half-spheres of glass, “reading stones,” were known in early Medieval
times and in 13t century Northern Italy, these developed into spectacles.
From Venice, a center for glass production, spread the craft of making
lenses for spectacles. “Almonds of Glass,” as they were called, shaped to
correct presbyopia, far-sightedness and, later, near-sightedness.

Given the ubiquity of Presbyopia and the general availability of glass
lenses, spectacles became common. The craft, and eventually the Guild,



Risner's editing of
Witelo's Perspectiva, a
widely used redaction
of De Aspectibus, the
13th century Latin
translation of the
Arabic original Kitab
al-Manazir, of Ibn al-
Haytham. Prefaced by
a significant exposition
of necessary
mathematics.

Ibn al-Haytham’s work
was based, in part, on
the optical work of
Ptolemy. The De
Aspectibus is an
example of ancient
Greek knowledge re-
entering the West via
Islamic scholarhip and
Latin translation.

The Lens

was entirely empirically based. With the mistaken ideas of how the
optical part of vision worked, and the lack of theoretical knowledge of
optics, only experiment demonstrated how lenses could help vision.
Mystery though they might have been, lenses were widely known and
used.

FOR

It was the optical part of vision that Johannes Kepler (1571-1630),
German mathematician and astronomer, addressed in 1604 in his Ad
Vitellionem Paralipomena, quibus Astronomiae parts Optica Traditur. “A
Supplement to Witelo, in which the Optical part of Astronomy is
Propounded.” The reference is to Witelo of Silesia who, in the late 13th
century, produced his Perspectiva, an elaborate recension of De
Aspectibus, “On Vision,” which was, in turn, the 12th century Latin
translation of the Kitab al-Manazir, “The Book of Optics,” an 11th century
work by the great Arabic polymath ibn al-Hasan ibn al-Haytham (965-
1040). The third edition of the printed version of Witelo’s work, along

. with the first printed edition of De Aspectibus were both edited by

Friedrich Risner (1522-1580). Risner, a German mathematician and
student of Petrus Ramus, used Ramus’ manuscripts to produce the
Opticae Thesaurus of 1572, containing the De Aspectibus of “Alhazen”
and the Peri Optikes of Witelo.

1572
“Alhazen”

Opticae thesaurus

A Treasury of Optics. The Seven Books of Alhazen of Arabia, now
Edited for the First Time. By the Same Author: A book on Twilight and
the Height of Clouds. Also, Ten books of Vitelo of Thuringopolis. All
restored, Augmented and Illustrated with Figures, and Augmented with
Commentary on Alhazen as Well. By Friedrich Risner.
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It was this book Kepler had studied and this book to which he wished to

make a Paralipomena — “an addressing, by way of supplement, of things
neglected or omitted.”
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beginning of modern
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of light, images from
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Kepler’s work marked
the final separation of
Light from Sight. It
also marked the end of
Medieval Perspectiva
(the combined study of
Light-Sight) and the
advent of early modern
optic.s
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1604
Johannes Kepler

Ad Vitellionem Paralipomena

A supplement to Vitelo, in which the Optical Part of
Astronomy is Propounded. Above all, on the Skillful
Observation and Appraisal of the Diameters of Eclipses of
the Sun and Moon. With Examples of Important Eclipses.
In this Book, Reader, You have, among many other new
things, A Lucid Treatment of the Means of Vision, and the
Use of the Humors of the Eye, against the Opticians and
Anatomists. By the author Johannes Kepler, His Imperial
Majesty's Mathematician.
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Among the most important of these things was the theory of the optical
function of the eye, which Kepler would not supplement, but rather
replace. The two prevalent theories of vision at that time were
intromission of visible species and intromission of rays. The former
posited that objects were continuously radiating thin, laminar
simulacrums (“species”) which were received by the eye. That later
posited that rays were emitted from objects, struck the cornea, and (only)
those striking it perpendicularly entered the eye. In both cases the
entering visual entity was conducted to the “crystalline lens”—considered
to be the seat of vision—and there produced “visual spirit” that was
conducted to the brain by the optic nerve. The organ “crystalline lens”
had its name not from an understanding of it function but rather from its
lenticular shape.

Kepler swept all this away. Adhering strictly to the axiom that light
travels in straight lines unless it is reflected or refracted, Kepler showed
how rays from an object entered the eye, were refracted by cornea and
lens, and focused on the back of the eye. The result was an inverted
image of the object “painted” on the retina. Kepler was not troubled by
the image inversion — stating that in some as-yet unknow way, the
subsequent process of perception made things right.

HOXR

By the late 16th century, the Netherlands had become a center for
optical craft. It is generally held that Hans and Zacharias Janssen first
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developed the compound microscope; that is, a convex lens at either end
, of a tube. It provided magnification of about 10x but with poor

' resolution. Not long after, in 1608, Hans Lippershey (1570-1619) filed

| for a patent for his instrument "for seeing things far away as if they were
nearby." A kijker (“looker”), as he called it. This was one of several near-
simultaneous announcements of the invention of the telescope.

News of these developments, followed by working examples, traveled to
the rest of Europe. Originally thought useful for land use (in particular,
military applications and surveying) and as an aid to navigation (sighting
ships and oncoming shorelines), they were a source for wonder. One
such example came into the hands of Galileo Galilei (1564-1652). He,
apparently, was the first to use the new instrument to view the heavens.

Modeled after the instruments from the Low Countries, Galileo made his
own lenses, grinding glass discs in spherical molds and on shaped
mandrels. After considerable practice and effort, he made a telescope
that provided 20x magnification. It used a double convex lens at one
end—the “objective lens”—and a double concave lens at the other—the
“eye piece.” With this he viewed the moon—discovering its mountainous
nature—, the planets—discovering the moons of Jupiter and the phases
of Venus, and the stars—discovering that the Milky Way was comprised
of many small stars. He published his findings as the Sidereus Nuncius
in March 1610.
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Galileo Galilei

Sidereus Nuncius

The Starry Messenger, Unfolding Great and Boundlessly
Astonishing Spectacles, and Presenting to Everyone for
Admiration, but Especially Philosophers and Astronomers,
by the Telescope of Galileo Galilei, Patrician of Florence,
Public Mathematician of the School at Padua. Recently
Invented by him and by its Help Observations are made of
the Face of the Moon, Innumerable Fixed Starts, the Miky
Way, Clouded Stars. But Especially About the Four Planets
Revolving around the Star of Jupiter with Marvelous
Swiftness in Unequal Intervals and Periods, Which, Known
to no one Until Now, the Author Discovered First, and
Determined to Name the Medicean Stars.
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The Dioptrice was
prompted by Galileo's
Sidereus Nuncius and
is the earliest complete
analysis of dioptrics.
Axioms, principles,
and experimental
results about the
refraction of light are
applied to lenses,
explaining image
formation,
magnification and its
measurement, image
inversion, and the
operation of the
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Galileo’s announcement broke like a thunderclap over natural
philosophy in Europe. It challenged the accepted architecture of the
heavens, etched deeply into the armor surrounding Scholastic teaching,
and showed how evidence concerning the unseen world could be
apprehended. Though first to show its power, there is little evidence that
Galileo understood in any detail how his telescope worked.

Among the very first to respond to the Sidereus Nuncius was Johann
Kepler with his Dioptrice of 1611.

3

o = 1611
’ | Johannes Kepler
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In March of 1610, Kepler had learned of Galileo’s discoveries from his
friend Johannes Matthaeus Wacker von Wackenfels, and in April the
ambassador from Tuscany, Giuliano de' Medici, provided Kepler with a
copy of the Sidereus Nuncius and asked him, via a letter from Galileo, to
provide a response. The result was Kepler's Dissertatio of May 1610,
praising Galileo and defending his claim to have discovered Jovian
satellites and lunar mountains. In August and September 1610 Kepler
verified Galileo's observations, using a telescope the Medici's had provide
the Archbishop of Cologne, and described them in his Narratio of October
1610. The Dissertatio and Narratio were incorporated in the Dioptrice.

Kepler considered refraction, measurement of refractive index, refraction
at curved surfaces and lenses; making a complete study of the convex
lens and the concave-convex lens combination. All this is finally used to
describe the operation of the telescope. In addition, Kepler proposed a
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telescope using two convex lenses. The analysis is entirely in the context
of vision and what is observed; lenses make objects appear larger,
inverted, distinct.

Though not the analytic geometrical optics of images that would appear
60 years later in Isaac Barrow's Lectiones Opticae of 1674, The Dioptrice
was a significant advance.

FOR

Euclid (fl. 300 BC) held that the eye emitted rectilinear vision rays from
the eye, with perception resulting from a haptic-like apprehension of
objects by these rays. Treated as lines, these rectilinear rays could be
analyzed with geometry — the advent of geometrical optics, with its initial
use in the analysis of mirrors.

Euclid’s theory of vision, like all those of the ancients, considered light
and sight deeply intertwined—essentially the same thing. But eventually
sight was separated from light. In ibn al-Haytham’s Kitab al-Manazir of
the 11tk century, light was understood to be necessary for vision but it
was considered a separate physical entity. It became the universal
custom to consider the ray as light’s smallest, fundamental
manifestation. The geometric analysis of rays, with paths altered by
reflection and refraction, allowed the study and analysis of optical
instruments, and a slow stepping away from purely empirical methods.

Fig. 5. Rays of light, produced by a special, multiple-beam-producing source off to the left,
passing through a convex and concave lens.

How light reflected from mirrors was know to the ancients. Using
geometry and the assumption that light rays travel in straight lines,
Euclid establish the first principle of geometric optics. The angle the
incoming ray formed with the perpendicular to the mirror (the angle of
incidence) was always equal to the angle the reflected ray made with the
same perpendicular (the angle of reflection).
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Ptolemy of Alexandria (c100 - c170 AD) was the first to record
measurements of the angles involved in refraction of light from air into
water, air into and glass, and water into glass. Unlike reflection, the
relationship between the angle of incidence and refraction was not
obvious; though Ptolemy did posit that, for a given material, an
approximate proportion existed between incidence and refraction angle.
The refracting power of a material came to be called its Index of
Refraction.

At the time of Kepler, a millennium and half later, there was still no
concise way to predict the change in a ray’s direction due to refraction.
He used an approximation that suited his purpose of analyzing ray paths
through lenses, but he understood that a fundamental law of refraction
was missing.

Such a law of refraction was first discovered in 1602 by Thomas Harriot,
(1560-1621) English mathematician and astronomer. He did not publish
his discovery and though he corresponded with Kepler, Kepler was
unaware of it. In 1621, the Dutch astronomer Willebrord Snell (1580-
1626) derived the law (in a form equivalent to that of Harriot) but he, too,
never published it. René Descartes (1596-1650) independently derived
the law and expressed the result with the ratio of the sines of the angles

| the incident and refracted rays make with the refracting surface

= Il perpendicular. This law of refraction appeared in his essay La Dioptrique,
Il one of three essays in his Discours de la méthode of 1637.
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Fig. 6. Law of Refraction. Left: From Descartes’ La Dioptrique showing his explanation.

. Right: The incident and refracted angles. In the case shown here, the density of the
second material is greater than that of the first. That is, it’s Index of Refraction is greater:
@ n2 > ni. The law is universally called “Snell’s Law.” The simple equation made it possible
' to mathematically describe refraction.
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It it known that the
Discours de la méthode
took a year to print
and was done it parts.
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Dioptrique and Les
Meterores, being
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first. La Geometrie and
the Discours itself,
written and printed
last.

Before the book
appeared, Descartes
circulated printed
copies of these first
two essays, seeking
reactions. These copies
ended up in the library
of Count Riccati.
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René Descartes

La Dioptrique et Les Meteores
Dioptrics and Meteorology

Two of the three essays written to demonstrate his new method of

natural philosophy: Optics and vision, and atmospheric phenomena.
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Snell’s Law allowed for the analysis of lenses, but advances were slow.
Optics was still a craft and the best instruments had the best lenses.
And these, in turn, were the result of craft: creating clear glass blocks,
proper shaping by grinding, use of lathes, smoothing and polishing.
Within 50 years of Galileo’s telescope, lens making advanced
considerably. Carlo Manzini (1599-1678) published his L'occhiale
all'occhio, dioptrica practica, “Glasses for the Eye. Practical Dioptrics” in
1660. It was the earliest complete manual for lens making, describing
the craft of the greatest lens makers of the time: Francesco Fontana (ca
1580-1656), Eustachio Divini (1610-1685), Anton Maria Schyrleus of
Rheita (1604-1660), and Giuseppe and Matteo Campani (1635-1715).
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theory of optical
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The Lens

SFOR

- By the last quarter of the 17t century, Geometry and the law of

refraction were brought to bear on problems in lens analysis and (very
importantly) lens design. The culmination of this geometric effort is
found in the optical lectures of Isaac Barrow (1630-1677). Barrow was
(among other things) a mathematician keenly interested in optics,
Lucasian Professor of Mathematics at Cambridge University, and teacher
of Isaac Newton. In 1675 he published his Lectiones Opticae &

= Geometricae, “Optical and Geometric Lectures.”

_ The title implies the inseparability of geometry and optics and the book is

the first complete, detailed analysis of image formation by mirrors and
lenses. The lens analysis is entirely theoretical, but advanced lens design
considerably.
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The Lens

Fig. 6. Geometric analysis and design of lenses, from Barrow’s Optical Lectures. More
than 200 geometric figures bristle from the plates and show the complete and entire
reliance on geometry used in lens analysis.in Barrow’s time.

Geometric Optics was remarkably successful. It made clear how simple
lenses worked (See Figure 7), aided lens design, and made clear an
important limit to lenses and what was required to correct it: Spherical
Aberration.

Convex
lens / Y
\‘.".
Larger \
image ".
on retina

N\ /;’x

Fig. 7. Magnification by a simple lens. Rays from every point on the object (red arrow) are
refracted by the lens and, when viewed by the eye, appear to be coming from points on a
larger object (pale red arrow). A larger image is produced on the retina and magnification
results. The solid blue rays trace the light path from the object to the retina of the eye.
Their dashed extensions show that the rays appear to be emanating from a point further
back on a larger virtual object.
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The Lens

SFOR

Lenses with spherical surfaces are the most straightforward to make. If a
glass plate is moved against another, grinding will naturally give nested
convex/concave spherical shapes. Similarly, using a lathe or a mandrel
can easily produce spherical surfaces. But it was known since Kepler’s
time that a lens with a spherical surface does not bring parallel incident
rays to a point. The further the incident rays are from the axis of the
lens, the closer is their focus. The result is a blurred image. See Figure 8.

Kepler showed that a hyperbolic surface did bring all rays to a single
focus, but hand griding such a surface is all but impossible. Descartes
tried and failed to design a machine for grinding hyperbolic surfaces.
But even a hyperbolic lens won’t help if the incident rays aren’t all
parallel to the lens axis. Full correction for spherical aberration would
require modern developments.

Fig. 8. Spherical Aberration. Spherical surfaces do not produce a sharp focus. The
differences between different focal points is exaggerated here for clarity.

Another difficulty found with all lenses was the presence of colored rings
and fringes. See Figure 9. This was called chromatic aberration. Its origin
was unknown an all attempts to correct it failed.

14



The Lens

Fig. 9. Chromatic Aberration. Colored rings and fringes in images produced by lenses.
Left: Image of moon from a set of simple telescope lenses. Right: Color blurring and detail-
obscuring in a microscope image.

Isaac Newton’s (1643-1727) theory of light and color offered an
explanation. In his famous letter that appeared in the Transactions of the
Royal Society of 1672, he proposed that white light was a composite of
lights of different colors. Objected to by most natural philosophers of the
time, Newton continued to experiment in optics and work on a large
optical treatise for thirty years.
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Newton's long-gestated
record of optical
experiments and their
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to deduce the nature of
light, refraction,
diffraction, and color.
The work's three books
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The Lens

Europe learned of Newton’s extensive work in his Optice of 1706, the
Latin translation of his Opticks of 1704. For lenses, the news was not
good. Newton described two experiments which appeared to demonstrate
that the amount of dispersion in glass (how differently light of different
colors was refracted) was inextricably linked to its refractive power. This
meant that any attempt to counter the chromatic aberration—with
another lens or prism, say—would necessarily require undoing the
refraction that produced the image. And so, any image produced by a
lens or series of lenses was uncorrectabely color-fringed by the very
nature of the process that produced it. See Figure 10.
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The Lens

Fig. 10. Chromatic Aberration. White light is a composite of lights of different colors. Each
is refracted by a different amount by a lens. The result is spread of colors, different focal
points for different colors of light, and therefore a chromatically blurred image. The
differences between the paths of light of different colors is exaggerated here for clarity.

Such was Newton’s authority and influence that most attempts at
dealing with chromatic aberration were abandoned for 50 years. Indeed,
Newton himself considered it necessary to abandon the use of lenses in
telescopes, and so invented and produced a reflecting telescope—an
instrument that used a parabolic mirror rather than a lens to produce an
image. It was this instrument which brought Newton onto the world
stage and a fellowship in the Royal Society of London.

29 C

A remarkable series of events, in quick succession, changed lenses, lens
making, and optical instruments. It was found that Newton’s inference
regarding dispersion and refraction was incorrect.

In 1747 Leonhard Euler (1707-1783), renowned Swiss mathematician,
first suggested that chromatic aberrations could be corrected with a glass
and water lens. He presented several subsequent papers to the St.
Petersburg Academy regarding achromatic lenses and in 1762 published
a summary of his work, Constructio Lentium Objectivarum ex Duplici Vitro,
“The Construction of Objective Lenses from Two Glasses”
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The Lens

Though initially objecting to Euler’s ideas, citing Newton’s work and
authority, John Dolland (1706-1761) English optician, learned of
Klingenstierna’s work and conducted experiments of his own with glass
and water prisms. In 1757 he reported his results in the Philosophical
Transactions of the Royal Society: Newton’s claim that dispersion could
not be overcome was incorrect. Dolland soon managed to produce a
doublet lens of two different glasses that exhibited much reduced
chromatic aberration. The technique of using multiple glass types soon
became common, as did the (near) achromatic lens.

crown glass flint glass

achromatic doublet

Fig. 11. Reducing Chromatic Aberration. Two types of glass are used: soft crown glass,
and hard flint glass. The refractive power of flint glass is greater than that of crown glass
and it has a different dispersive properties.The combined effect to significantly narrow the
range over which light of different colors come to a focus.

HOXR

By the middle of the 18th century, Calculus and Algebra began to replace
geometry in lens design. It was possible to mathematically express the
relationships between all the aspects of lens performance: the shapes of
a series of lens’ surfaces, the index of refraction and chromatic
dispersion of the material from which they are made, and the spherical
and chromatic aberrations the lenses produce. Leonhard Euler based his
elaborate exposition on lens design, the Dioptrice of 1769, on these ideas.
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But Euler was no optician and his work was limited and purely
theoretical. Alexis Clairaut (1713-1765) a French mathematician and
practicing astronomer, had significantly clearer and more practical ideas.
Between 1756 and 1762 he read three long papers to the French

L | academy on the design of achromatic lenses. There were published in the

Meémoires de 1'Académie royale des sciences between 1761 and 1764. His
mathematical work was accompanied by experiment to test his equations

~ and showed the power of mathematics when brought to the problem of

lens design. This advance of mathematics was part of the general
mathematization of science that began in the middle of the 18t century.
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The Lens

SFOR

It became clear from the work of Clairaut and others that the power of
the new mathematical tools to design lenses depended critically on
knowing the properties of the glasses from which they were made.

Since the time of Ptolemy, a single value of the Index of Refraction was
used to define the degree to which light was bent when it entered a
material more dense than air. Water has an index of refraction of 1.33;
soft glass 1.52; hard glass 1.62; diamond 2.4. These values could be
used with Snell’s Law to predict the paths of light rays through lenses.

But Newton’s experiments showed that the Index of Refraction varied
with the color or species of light. For a given material, red light was
refracted least and blue light refracted most. This was the dispersion,
and it varied from glass to glass. Snell’s Law would have to be used with
a different index of refraction for each color of light.

The determination of the index of refraction had always been
problematic. Angle measurements in glass are difficult, though Kepler
did devise an ingenious way — even if it did require a carefully made block
of glass. See Figure 12.
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Fig. 12. Kepler’s method for measuring refraction in glass. A figure on the first page of his
Dioptice of 1611. A glass block (A) is placed in an opaque cradle and place in a beam of
light. The angles of incidence and refraction can be determined simply from the lengths of
the shadows of the cradle inside and outside the glass block. The ‘A’ at the bottom of the
page is the signature of the first quire, ‘sint’ is the catch word.
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Boscovich presents
theory, mathematics,
and examples for
designing achromatic
lenses with two and
three elements.

The Lens

The measurement of indices of refraction for different colors of light was
a formidable problem. It was clearly understood and first addressed by
Roger Boscovich (Rudjer Josip BosSkovi¢, 1711-1787), from what is now
Croatia, developed a “Vitrometer” (Glass Meter) for measuring indices of
refraction. It and its use was described in two long articles dealing with
chromatic aberration in lenses that appeared in the proceeding of the
Accademia di Bologna in 1767. Though advancing the measurement art,
the Vitrometer was not able to provide the necessary data with the
necessary precision.
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It was not until the work of Joseph Fraunhofer (1787-1826), an optician
working at the Bavarian Optical Institute, that a singular advance was
made in the refraction measurement problem. In the Annalen der Physik
of 1817, Fraunhofer published his Bestimmung des Brechungs- und des
Farbenzerstreungs-Vermdgens verschiedener Glasarten, "Determination of
the refractions and color-dispersion properties of various types of glass,
with respect to the improvement of achromatic telescopes." He described
his discovery of the narrow dark lines in the solar spectrum—now call
Fraunhofer Lines—and the process and instruments by which he used
them to accurately determine glass's dispersion. That is, the accurate
determination of the indices of refraction of light of different wavelengths.
Fraunhofer's paper was internationally influential and changed optical
measurement practice throughout the technical world.
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Fraunhofer describes
his discovery of the

narrow dark lines in
the solar spectrum—
the Fraunhofer lines.

He showed how they
could be used as very
precise markers of
light’s wavelength and
their shift by various
glasses reveal a glass’
index of refraction for
that wavelength.

The Annalen der Physik
was widely read
throughout Europe
and news of
Fraunhofer’s discovery
spread rapidly.

This paper is
sometimes cited as the
“beginning of
Astrophysics.” This is
incorrect and a prime
example of
“precursoritis.” It was
50 years later that the
dark lines were
recognized as
abdorption lines—the
optical signature of
specific chemical
elements. This allowed
chemical analysis at a
distance—part of
modern Astrophysics.
Fraunhofer knew
nothing of such things.

The Lens

By Fraunhofer’s time, the wave theory of light had advanced in the
general natural philosophy community, and displaced the particle
theory. Different colors of light were now thought to be caused by light of
different wavelengths, moving in an all-pervading medium that came to
be called the Luminiferous Ather.
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The dark lines in the solar spectrum observed by Fraunhofer were very
narrow and therefore marked positions, equivalent to wavelengths, in the
spectrum very accurately. The shift in these lines produced by refraction
in a glass under study revealed the precise index of refraction for that
glass, for that wavelength. Fraunhofer was able to determine glass
dispersion with unprecedented accuracy. See Figure 13.
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Fig. 13. Fraunhofer Lines: The dark lines that appeared in the solar spectrum Because
they were very narrow, they marked places (wavelengths) very precisely. Fraunhofer
labeled these with upper and lower case letters. The wavelength of the light involved is
show at the bottom, expressed in nanometers (10° m).
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The Lens

Accurate dispersion measurements allowed Fraunhofer to produce lenses
with significantly reduced chromatic aberration. His skill in griding and
polishing, along with reduced chromatic aberration allowed him to
produce near achromatic and aspheric lenses. They were the best lenses
then available anywhere in the world.

Along with accurate glass dispersion data came advances in correcting
the other types of aberrations that affected lenses. By the end of the 19th
century, limits to lens performance were well understood and only
technological difficulties of manufacture had to be overcome. The 20th
century saw advances in glass chemistry and manufacture, lens coating
capabilities, computer-aided simulation for lens design, and computer-
driven manufacturing processes, and significant cost reductions and
increased availability of even very complex lens systems.

FOR

Augustin-Jean Fresnel (1788-1827), French engineer and mathematical-
physicist, produced a wave theory of light that correctly predicted light
diffraction and polarization phenomena and by 1830 was universally
accepted. Being an engineer, his day-job in 1819 was working for the
French Commission on Lighthouses. Combining the urgent need to

- improve lighthouse effectiveness and his knowledge of optics, Fresnel
proposed an ingenious sectioning or stepping of a lens to allow
lighthouses to produce strong, collimated beams of light from small
sources. See Figure 14.

Fig. 14. The Fresnel Lens. Left: A large, heavy plano-convex lens can be compressed into
a sectioned, more practical lens. Center: Light emitted into many directions from a small
source is redirected into a beam by the compressed lens. Right: An example of a
lighthouse Fresnel lens in use in 1870.

In the case of lighthouse lenses, the goal was not to produce accurate

magnified images—indeed, it cannot do that. Rather, to simply redirect
light. This use of lenses, and other optical material came to be known as
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The Lens

non-imaging optics. A modern example is the use of lenses to inject light
into the end of a specially clad glass thread that conducts light by
refraction along its length. The basis for modern fiberoptics
communication systems.

The use of lenses for telescopes came to an end late in the 19t century.
One of the last and largest telescope lenses ever made was an achromatic
doublet, 40” in diameter (!), for the Yerkes Observatory outside of
Chicago. It was made by the foremost opticians in the United States at
the time, Alvan Clark & Sons in 1897

Fig. 15. The 40” refracting telescope at the Yerkes Observatory. The lens was made by
Alvan Clark & Sons, the tube and mounting by Warner & Swasey Co. of Cleveland. It
remains the largest operating refracting telescope in the world. The focal length of the lens
was 63 feet, so the tube had to be at least that long.

The cost, difficulty in manufacture, and light-loss due to absorption of
light in the thick glass of larger lenses made them impractical for

astronomical use. Reflecting telescopes (of which Newton’s was among
the first) would eventually become the basis for virtually all astronomy.

Lenses continue to be important in numerous other applications,
including photography or image-capturing in general. George Eastman
pioneered the large-scale manufacture and use of flexible roll film and
lenses in portable cameras. Lens systems of the very highest quality and
remarkably small size can now be mass manufactured and coupled with
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The Lens

nanotechnology-based image capturing chips. Their presence in mobile
phones has, for better or worse, made photographers of us all.

In microscopy, significant advances in lens system were made early in
the 20th century, increasing the magnification and resolution attainable.
It was learned, for example, that the light diffracted from the object being
studied had to be gathered into the image, if an accurate view was to be
obtained. The best optical microscopes provided images of objects about
10-¢ meters in size. Modern advanced microscopical instruments
combine nanotechnology with conventional lens systems to produce
images of objects that are only 5x10-® meters in size.

Operating on the same principle as a simple convex lens, but at sizes and
distances difficult to image, an entire galaxy can bend light and bring it
to a focus. Rather than a path changed by refraction, light’s path is
moving through space that has itself been bent by gravity. A
phenomenon first predicted by Einstein; gravitational lenses have
produced remarkable images of distant objects.

Fig 16. Gravitational Lens. Left: Light from the much more distant object spreads out but
encounters space itself bent by the strong gravitational field of the nearer galaxy. The
light is bent and, by chance of distance and alignment, is (nearly) focused on the earth.
Right: The blue streaks are images of a galaxy far beyond the nearer, yellow galaxy in
the center.
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The Lens

SFOR

Knowing how lenses work deepens our understanding of their role in the
most quotidian parts of our lives and enables us to appreciate how
essential they are to our quest to apprehend the world in which we live—
from the microscope to the macroscopic. And it is gratifying to know of
the role that printing has had in presenting, preserving, distilling,
culling, and testing the theories, practice, and discoveries that formed
the basis for our modern understanding and use of the lens.
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